www.win.tue.nl/~aeb/voorlincod.html
Check- or generator matrices of some linear codes I give here check- or generator matrices of some linear codes. Most of these codes were found by computer search. Codes cited in older papers, whose parameters are implied by other codes given here, are set italic. Look at caps for codes with distance 4. Check- or generator matrices of some linear binary codes Check- or generator matrices of some ...
www.mathi.uni-heidelberg.de/~yves/Matritzen/Codes/CodeMatIndex.html
Codes database ...
www.tec.hkr.se/~chen/research/codes/searchqc2.htm
www.tcs.hut.fi/~pat/72.html
Dense sphere packings from new codes coauthor Jurgen Bierbrauer Journal of Algebraic Combinatorics, 11 (2000), 95-100. Abstract: The idea behind the coset code construction is to reduce the construction of sphere packings to error-correcting codes in a unified way. We give here a short self-contained description of this method. In recent papers we constructed a large number of new binary, ...
www.mathi.uni-heidelberg.de/~yves/Papers/Sphere.html
www.tcs.hut.fi/~pat/matrices.html
Lower Bounds and Encoding Circuits for Weakly Self-dual CSS Codes Codes up to length 32 encoding up to 30 qubits n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 k/n 2 2 2 3 - 1 3 4 2 - 2 4 5 - 1 - 1 5 6 2 - 2 - 2 6 7 - 3 - 1 - 1 7 8 4 - 2 - 2 - 2 8 9 - 3 - 2 - 1 - 1 9 10 2 - 2 - 2 - 2 - 2 10 11 - 3 - 2 - 2 - 1 - 1 11 12 4 - 3 - 2 - 2 - 2 - 2 12 13 - 3 - 2 - ...
iaks-www.ira.uka.de/home/grassl/QECC/CSS
Last modified on August 23, 1999 Table of the best currently known lower and upper bounds on the smallest size of a covering code Below we present tables with the best known bounds on the size of binary covering codes of length up to 33 and covering radius up to 10. The table is based on Table 6.1 from G.Cohen, I.Honkala, S.Litsyn, A.Lobstein Covering Codes , Elsevier, 1997. Please send any ...
www.eng.tau.ac.il/~litsyn/tablecr
Isometry classes of codes Harald Fripertinger These pages serve as additional information to the following publications: A. BETTEN, H. FRIPERTINGER, A. KERBER, A. WASSERMANN, K.-H. ZIMMERMANN: Codierungstheorie: Konstruktion und Anwendung linearer Codes, Springer, Berlin, Heidelberg, New York, 1998. ISBN 3-540-64502-0.. HARALD FRIPERTINGER, ADALBERT KERBER: Isometry Classes of Indecomposable ...
www.mathe2.uni-bayreuth.de/frib/codes/tables.html